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Stereoselective synthesis of the dolastatin units by
organotrifluoroborates additions to a-amino aldehydes
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Abstract—Dolastatin units were synthesized from the 1,2-addition reactions of potassium allyl or crotyltrifluoroborate salts to
aldehyde derivatives from natural amino acids. The reactions were carried out in presence of a phase-transfer catalyst in a biphasic
medium at room temperature and excellent yields (>89–93%) and stereoselective (>90:10 to 98:2) were obtained. The dolastatin units
8 and 14a–b were obtained after three steps in good overall yields (50–62%).
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Marine cyanobacteria has been shown to be a rich
source of bioactive compounds, mainly peptides and
depsipeptides.1 Several of these compounds resemble
dolastatins, which were originally isolated from the sea
hare Dolabella auricularia.2

Since dolastatin 10 (1, Fig. 1)3–6 is in human clinical tri-
als for the treatment of cancer7–9 its syntheses and that
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Figure 1. Dolastatin-10 and malevamide-D.
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of its analogues (e.g., malevamide-D6) has become very
attractive.

Unusual amino acids, such as (2R,3R,4S)-dolaproine
(Dap), (3R,4S,5S)-dolaisoleuine (Dil), or 3-methoxy-
5-methyl-4-(methylamino)hexanoic acid (MMMAH),
are present in the structure of this dolastatins family,
so their stereoselective syntheses are extremely impor-
tant and have been shown by different research’s
groups.10–19

Potassium organotrifluoroborate salts are excellent sub-
stitute for boronic acids or esters.20–23 Among their
advantages we can highlight: (i) higher stability to air
and moisture; (ii) easily prepared from inexpensive
materials and; (iii) greater nucleophilicity. They are
good partners to Suzuki–Miyaura and 1,2- or 1,4-addi-
tion reactions.

Herein, we wish to report a successful and mild
approach for the total synthesis of the b-methoxy-c-
amino acids, using the 1,2-addition reaction between
potassium allyl or crotyltrifluoroborate salts and
aldehydes derived from natural amino acids in presence
of a phase-transfer catalyst (PTC).
2. Results and discussion

The addition reactions were carried out in a biphasic
system (dichloromethane and water) in presence of
10 mol % of tetra n-butylammonium iodide (n-Bu4NI)
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Scheme 1. Synthesis of N-Boc-dolaproine (Dap) from the N-Boc-prolinal.
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in 20 min.24–26 The N-Boc-Dap 8 was prepared from the
crotylation of N-Boc-prolinal27,28 3 (Scheme 1). The
addition products were obtained in 95% global yield
(mixture of four possible diastereoisomers) and the
desired (2R,3R,4S)-syn product 5, precursor of dolapro-
ine, was isolated in 89% yield (dr >94:6).

N-Boc-Dil 14a and N-Boc-MMMAH 14b were obtained
from the allylation of N-Boc-isoleucinal 9a and N-Boc-
valinal 9b, respectively (Scheme 2).26 The syn alcohol
11a derived from 9a was obtained in 91% yield and
dr >90:10, while the syn alcohol 11b derived from 9b
was obtained in 93% yield and dr >98:2.

As in the case of N-Boc-Dap, the syn/anti stereochemis-
try was assigned on the basis of the corresponding 4,5-
disubstituted oxazolidin-2-ones (12a–b).29 The coupling
constant J4�5 was measured and found to be 5.9 Hz in
both compounds. In both cases, these values corres-
ponding to the cis stereochemistry.30

The syn/anti stereochemistry of product 5 was assigned
on the basis of the corresponding 4,5-dissubstituted
oxazolidin-2-one 6. The coupling constant J4–5 was mea-
sured and found to be 6.9 Hz that corresponding to the
cis stereochemistry.
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There are in the literature several examples of chiral or
achiral crotylboronate additions to N-Boc-prolinal.15,31

However, these protocols involve a longer reaction per-
iod, and lower yields and stereoselectivity, as well as
anhydrous solvents and unstable boron compounds
are required.

Alcohol 5 was submitted to an O-methylation reaction
with NaH and MeI, the O-methylated product 7 was
obtained with 76% yield. The oxidative double-bond
cleavage of 7, in presence of RuO2 yielded N-Boc-Dap
8 in 75% yield.15 The oxidative cleavage was also carried
out using KMnO4 and NaIO4.32 However, a complex
mixture was observed and the desired product was
observed by HPLC in very small quantity. The synthesis
of N-Boc-dolaproine 8 was achieved in three steps from
N-Boc-prolinal, with an overall yield of 50%.

The allylation of N-Boc-valinal 9b was also carried out
in dichloromethane and BF3ÆEt2O;33,34 however, the
addition product 11b was obtained in a lower yield
(50%) then the biphasic medium and n-Bu4NI were used.

Alcohols 11a–b were submitted to a N,O-dimethylation
with Me2SO4 and NaH/H2O.35,36 Products 13a–b were
obtained in 80% yield in both cases. Despite the yield
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of N,O-dimethylation using NaH and MeI is slightly
higher,14,15 we chose the NaH/H2O system to avoid
the excessive use of the methylating agent and due to
economics, since Me2SO4 is cheaper than MeI.

Products 13a–b were submitted to an oxidative cleavage
in presence of RuO2.37 The N-Boc-Dil 14a was obtained
in 80% yield, while the N-Boc-MMMAH 14b in 83%
yield.

The syntheses of this N-Boc-c-amino acids 14a–b were
achieved in three steps from the corresponding N-Boc-
amino aldehydes, with an overall yield of 58% and
62%, respectively.
3. Conclusion

In summary, we present a mild protocol for the prepara-
tion of unique units present in the dolastatin-10 and its
analogues. Allylation and crotylation of N-Boc-amino
aldehydes were carried out in biphasic and aqueous
media utilizing potassium allyl- and crotyltrifluoro-
borates.

The addition reactions showed excellent stereoselectivi-
ties (>90:10 to 98:2) and the products were achieved in
high yields (>89%). This new methodology is an alterna-
tive to the use of chiral auxiliary or elaborate boronic
esters.
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3H), 3.32–3.49 (m, 1H), 3.70–3.85 (m, 2H), 9.29 (s, 1H).
ESI-MS m/z (%): 324 (32, M+K), 224 (5), 202 (100), 187
(15).
(3R,4S,5R)-4-(tert-butoxycarbonyl(methyl)amino)-3-methoxy-
5-methylheptanoic acid 14a: The N-Boc-Dil 14a was
prepared from compound 13a in 80% of yield. ½a�20

D �3
(c 1, MeOH); 1H NMR (CDCl3) (two conformers, 50:50)
0.77–0.88 (m, 3.5H), 0.94–1.03 (m, 3.5H), 1.22–1.33 (m,
1H), 1.40 (s, 4.5H), 1.43 (s, 4.5H), 1.88–1.98 (m, 1H), 2.43–
2.64 (m, 2H), 2.76 (s, 1.5H), 2.77 (s, 1.5H), 3.33 (s, 1.5H),
3.37 (s, 1.5H), 3.72–3.76 (m, 0.5H), 3.80–3.86 (m, 0.5H),
3.95–3.98 (m, 1H), 7.70 (s, 1H). ESI-MS m/z (%): 326 (18,
M+Na), 304 (9, M+1), 248 (100), 304 (67).
(3R,4S)-4-(tert-butoxycarbonyl(methyl)amino)-3-methoxy-
5-methylhexanoic acid 14b: The N-Boc-MMMAH 14b was
prepared from compound 14b in 83% of yield. ½a�20

D �17 (c
1, MeOH); 1H NMR (CDCl3) (two conformers, 50:50)
0.83–0.85 (m, 3H), 0.99–1.04 (m, 3H), 1.42 (s, 4.5H), 1.45
(s, 4.5H), 2.11–2.17 (m, 1H), 2.40–2.72 (m, 2H), 2.78 (s,
1.5H), 2.80 (s, 1.5H), 3.35 (s, 1.5H), 3.37 (s, 1.5H), 3.95–
3.98 (m, 0.5H), 3.76–3.80 (m, 0.5H), 3.95–4.08 (m, 1H),
9.63 (s, 1H). ESI-MS m/z (%): 312 (13, M+Na), 290 (6,
M+1), 234 (100), 190 (72).
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